Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 11: 1267634, 2023.
Article in English | MEDLINE | ID: mdl-37795387

ABSTRACT

Introduction: The green revolution model that is followed in the Brazilian Cerrado is dependent on mechanization, chemical fertilization for soil dressing and correction, and the use of herbicides. Paraquat is a methyl viologen herbicide marketed as bipyridylium dichloride salts and used (in low doses) to combat weeds in their post-emergence stage. It is a non-selective pesticide that causes the peroxidation of the lipids that make up the cell membrane, and when it comes into contact with foliage, it results in the death of the plant. Methods: The effect of water molecules co-crystallized in Paraquat salt structures was analyzed in anhydrous, dihydrate, and trihydrate forms to understand those physicochemical properties in its redox activity. The frontier molecular orbitals were also carried out using DFT to obtain the chemical reactivity of the bipyridylium cation. Finally, the supramolecular arrangements were evaluated to analyze the physicochemical stability and acquire insights on superoxide anions. Results and discussion: The electronic structure indicated that the BP cation presents an acidic character due to its low ELUMO value, while the salt has a more basic character due to its high EHOMO value. For this reason, the BP ion is more susceptible to reduction during the weeds' photosynthesis process. During the process of plant photosynthesis, PQ is reduced to form a stable radical cation. In the supramolecular arrangement, the presence of water molecules increases the number of strong H-bonds, while the weak/moderate H-bonds are stabilized. PQ's toxic effects are observed in wildlife, domesticated animals, human populations, and ecosystems. The influence of PQ on the terrestrial environment is limited because of the soil adsorption capacity associated with good agricultural practices. The current use of good agricultural practices in the Cerrado seems not to prevent the environmental impacts of herbicides like PQ because it aims for the expansion and profitability of large-scale farming based on input-intensive practices instead of sustainable agriculture processes.

2.
Int J Mol Sci ; 24(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37239911

ABSTRACT

Non-enzymatic thiol addition into the α,ß-unsaturated carbonyl system is associated with several biological effects. In vivo, the reactions can form small-molecule thiol (e.g., glutathione) or protein thiol adducts. The reaction of two synthetic (4'-methyl- and 4'-methoxy substituted) cyclic chalcone analogs with reduced glutathione (GSH) and N-acetylcysteine (NAC) was studied by (high-pressure liquid chromatography-ultraviolet spectroscopy) HPLC-UV method. The selected compounds displayed in vitro cancer cell cytotoxicity (IC50) of different orders of magnitude. The structure of the formed adducts was confirmed by (high-pressure liquid chromatography-mass spectrometry) HPLC-MS. The incubations were performed under three different pH conditions (pH 3.2/3.7, 6.3/6.8, and 8.0/7.4). The chalcones intrinsically reacted with both thiols under all incubation conditions. The initial rates and compositions of the final mixtures depended on the substitution and the pH. The frontier molecular orbitals and the Fukui function were carried out to investigate the effects on open-chain and seven-membered cyclic analogs. Furthermore, machine learning protocols were used to provide more insights into physicochemical properties and to support the different thiol-reactivity. HPLC analysis indicated diastereoselectivity of the reactions. The observed reactivities do not directly relate to the different in vitro cancer cell cytotoxicity of the compounds.


Subject(s)
Antineoplastic Agents , Chalcone , Chalcones , Neoplasms , Chalcone/pharmacology , Chalcones/pharmacology , Glutathione/metabolism , Acetylcysteine/chemistry , Chromatography, High Pressure Liquid , Antineoplastic Agents/pharmacology , Sulfhydryl Compounds/chemistry
3.
RSC Adv ; 12(53): 34746-34759, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36545583

ABSTRACT

Biodiesel production is one of the promising strategies to reduce diesel consumption and an important contribution to climate change. However, biodiesel stability remains a challenging problem in biofuel use in the global energy matrix. In this context, organic additives have been investigated to minimize these problems and reduce harmful emissions to comply with fuel requirement standards. In this study, we discuss a comprehensive structural description, a behavior of B15 [85% volume of diesel and 15% volume of biodiesel (B100)] stability in the presence of antioxidants (chalcone analogues), and a theoretical calculation to pave the way for clarifying and expanding the potential of title compounds as an antioxidant additive for diesel-biodiesel blends. Finally, a systematic description of the oxidation stability was undertaken using a specialized machine learning computational pySIRC platform.

4.
Molecules ; 27(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36432059

ABSTRACT

Angiotensin-converting enzyme (ACE) inhibitors are one of the most active classes for cardiovascular diseases and hypertension treatment. In this regard, developing active and non-toxic ACE inhibitors is still a continuous challenge. Furthermore, the literature survey shows that oxidative stress plays a significant role in the development of hypertension. Herein, glutathione's molecular structure and supramolecular arrangements are evaluated as a potential ACE inhibitor. The tripeptide molecular modeling by density functional theory, the electronic structure by the frontier molecular orbitals, and the molecular electrostatic potential map to understand the biochemical processes inside the cell were analyzed. The supramolecular arrangements were studied by Hirshfeld surfaces, quantum theory of atoms in molecules, and natural bond orbital analyses. They showed distinct patterns of intermolecular interactions in each polymorph, as well as distinct stabilizations of these. Additionally, the molecular docking study presented the interactions between the active site residues of the ACE and glutathione via seven hydrogen bonds. The pharmacophore design indicated that the hydrogen bond acceptors are necessary for the interaction of this ligand with the binding site. The results provide useful information for the development of GSH analogs with higher ACE inhibitor activity.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Hypertension , Humans , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Binding Sites , Glutathione
5.
J Mol Model ; 28(10): 338, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36181566

ABSTRACT

Active pharmaceutical ingredients are formulated as the salt form, aiming to modulate their physicochemical properties. In this regard, the optimization and choice of the salt former have a strong influence on toxicity, therapeutic efficiency, and bioavailability. Sulfamethoxazole (SMZ) salts with Na+, Cl-, and Br- counterions influence in the supramolecular arrangement as well as in their thermodynamic and kinetic parameters. Herein, we analyzed the interactions of the Na+, Cl-, and Br- counterions on the supramolecular arrangement of the sulfamethoxazole salts by Hirshfeld surfaces, fingerprint plots, and theoretical methods-quantum theory of atoms in molecules and natural bond orbitals. Moreover, we evaluated their electronic structure by density functional theory using calculation of the frontier molecular orbitals. Molecular electrostatic potential maps were also obtained to predict the interactions of the counterions along crystalline arrangements. We observed that the structures of [SMZ]+ and [SMZ]- ions differ slightly from the SMZ. The chemical reactivity indices show that the SMZ is kinetically more stable than its respective ions, while its anion is more polarizable, and its cation has a higher global electrophilicity index. The molecular electrostatic potential maps show high charge density in the sulfonyl group (nucleophilic region) and the heterocyclic amino group (electrophilic region). Although the molecular skeleton is identical among the three SMZ species and the presence of different counterions in the formation of the crystalline structure of the salts results in supramolecular arrangements with different patterns of intermolecular interactions, despite being very similar in terms of intensities.


Subject(s)
Salts , Sulfamethoxazole , Ions/chemistry , Pharmaceutical Preparations , Static Electricity
6.
J Mol Model ; 27(2): 65, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33532877

ABSTRACT

This work describes a comparative molecular structure of two hydroxychlorochalcones with an emphasis on their planarity. Hirshfeld surface analysis investigates the effect of ortho- and para-chlorine substitution on supramolecular arrangement and physical chemical properties. The molecular conformation of 2'-hydroxy-4',6'-dimethyl-2-chlorochalcone and 2'-hydroxy-4',6'-dimethyl-4-chlorochalcone chalcones was obtained through DFT with the exchange-correlation functional M06-2X and the 6-311++G(2d,2p) basis set, and the results were compared with the experimental X-ray data in order to get insights on the effect of ortho- and para-chlorine substitution. The charge transfer into entire main carbon chain was also investigated using frontier molecular orbitals (HOMO and LUMO), NBO, and MEP map in order to describe the comparative conformational stability due to the resonance effect produced by π electron displacements. Finally, the intermolecular observed interactions were analyzed by QTAIM, with the M06-2X/6-311G++(d,p) theory level.

SELECTION OF CITATIONS
SEARCH DETAIL
...